Skip to content
Projeler
Gruplar
Parçacıklar
Yardım
Yükleniyor...
Oturum aç / Kaydol
Gezinmeyi değiştir
K
keras-retinanet
Proje
Proje
Ayrıntılar
Etkinlik
Cycle Analytics
Depo (repository)
Depo (repository)
Dosyalar
Kayıtlar (commit)
Dallar (branch)
Etiketler
Katkıda bulunanlar
Grafik
Karşılaştır
Grafikler
Konular (issue)
0
Konular (issue)
0
Liste
Pano
Etiketler
Kilometre Taşları
Birleştirme (merge) Talepleri
0
Birleştirme (merge) Talepleri
0
CI / CD
CI / CD
İş akışları (pipeline)
İşler
Zamanlamalar
Grafikler
Paketler
Paketler
Wiki
Wiki
Parçacıklar
Parçacıklar
Üyeler
Üyeler
Collapse sidebar
Close sidebar
Etkinlik
Grafik
Grafikler
Yeni bir konu (issue) oluştur
İşler
Kayıtlar (commit)
Konu (issue) Panoları
Kenar çubuğunu aç
Seyfullah Tıkıç
keras-retinanet
Commits
989b6999
Kaydet (Commit)
989b6999
authored
Şub 28, 2018
tarafından
Hans Gaiser
Dosyalara gözat
Seçenekler
Dosyalara Gözat
İndir
Eposta Yamaları
Sade Fark
Perform per class NMS.
üst
80cc65d3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
47 additions
and
29 deletions
+47
-29
tensorflow_backend.py
keras_retinanet/backend/tensorflow_backend.py
+4
-4
_misc.py
keras_retinanet/layers/_misc.py
+39
-22
retinanet.py
keras_retinanet/models/retinanet.py
+4
-3
No files found.
keras_retinanet/backend/tensorflow_backend.py
Dosyayı görüntüle @
989b6999
...
...
@@ -18,10 +18,6 @@ import tensorflow
import
keras
def
top_k
(
*
args
,
**
kwargs
):
return
tensorflow
.
nn
.
top_k
(
*
args
,
**
kwargs
)
def
resize_images
(
*
args
,
**
kwargs
):
return
tensorflow
.
image
.
resize_images
(
*
args
,
**
kwargs
)
...
...
@@ -34,6 +30,10 @@ def range(*args, **kwargs):
return
tensorflow
.
range
(
*
args
,
**
kwargs
)
def
scatter_nd
(
*
args
,
**
kwargs
):
return
tensorflow
.
scatter_nd
(
*
args
,
**
kwargs
)
def
gather_nd
(
*
args
,
**
kwargs
):
return
tensorflow
.
gather_nd
(
*
args
,
**
kwargs
)
...
...
keras_retinanet/layers/_misc.py
Dosyayı görüntüle @
989b6999
...
...
@@ -76,43 +76,60 @@ class Anchors(keras.layers.Layer):
class
NonMaximumSuppression
(
keras
.
layers
.
Layer
):
def
__init__
(
self
,
nms_threshold
=
0.5
,
top_k
=
None
,
max_boxes
=
300
,
*
args
,
**
kwargs
):
self
.
nms_threshold
=
nms_threshold
self
.
top_k
=
top_k
self
.
max_boxes
=
max_boxes
def
__init__
(
self
,
nms_threshold
=
0.5
,
score_threshold
=
0.05
,
max_boxes
=
300
,
*
args
,
**
kwargs
):
self
.
nms_threshold
=
nms_threshold
self
.
score_threshold
=
score_threshold
self
.
max_boxes
=
max_boxes
super
(
NonMaximumSuppression
,
self
)
.
__init__
(
*
args
,
**
kwargs
)
def
call
(
self
,
inputs
,
**
kwargs
):
boxes
,
classification
,
detections
=
inputs
# TODO: support batch size > 1.
boxes
=
boxes
[
0
]
classification
=
classification
[
0
]
detections
=
detections
[
0
]
boxes
=
inputs
[
0
][
0
]
classification
=
inputs
[
1
][
0
]
other
=
[
i
[
0
]
for
i
in
inputs
[
2
:]]
# can be any user-specified additional data
indices
=
backend
.
range
(
keras
.
backend
.
shape
(
classification
)[
0
])
selected_scores
=
[]
# perform per class NMS
for
c
in
range
(
int
(
classification
.
shape
[
1
])):
scores
=
classification
[:,
c
]
# threshold based on score
score_indices
=
backend
.
where
(
keras
.
backend
.
greater
(
scores
,
self
.
score_threshold
))
score_indices
=
keras
.
backend
.
cast
(
score_indices
,
'int32'
)
boxes_
=
backend
.
gather_nd
(
boxes
,
score_indices
)
scores
=
keras
.
backend
.
gather
(
scores
,
score_indices
)[:,
0
]
# perform NMS
nms_indices
=
backend
.
non_max_suppression
(
boxes_
,
scores
,
max_output_size
=
self
.
max_boxes
,
iou_threshold
=
self
.
nms_threshold
)
# filter set of original indices
selected_indices
=
keras
.
backend
.
gather
(
score_indices
,
nms_indices
)
# mask original classification column, setting all suppressed values to 0
scores
=
keras
.
backend
.
gather
(
scores
,
nms_indices
)
scores
=
backend
.
scatter_nd
(
selected_indices
,
scores
,
keras
.
backend
.
shape
(
classification
[:,
c
]))
scores
=
keras
.
backend
.
expand_dims
(
scores
,
axis
=
1
)
scores
=
keras
.
backend
.
max
(
classification
,
axis
=
1
)
selected_scores
.
append
(
scores
)
# selecting best anchors theoretically improves speed at the cost of minor performance
if
self
.
top_k
:
scores
,
indices
=
backend
.
top_k
(
scores
,
self
.
top_k
,
sorted
=
False
)
boxes
=
keras
.
backend
.
gather
(
boxes
,
indices
)
classification
=
keras
.
backend
.
gather
(
classification
,
indices
)
detections
=
keras
.
backend
.
gather
(
detections
,
indices
)
# reconstruct the (suppressed) classification scores
classification
=
keras
.
backend
.
concatenate
(
selected_scores
,
axis
=
1
)
indices
=
backend
.
non_max_suppression
(
boxes
,
scores
,
max_output_size
=
self
.
max_boxes
,
iou_threshold
=
self
.
nms_threshold
)
# reconstruct into the expected output
detections
=
keras
.
backend
.
concatenate
([
boxes
,
classification
]
+
other
,
axis
=
1
)
detections
=
keras
.
backend
.
gather
(
detections
,
indices
)
return
keras
.
backend
.
expand_dims
(
detections
,
axis
=
0
)
def
compute_output_shape
(
self
,
input_shape
):
return
(
input_shape
[
2
][
0
],
None
,
input_shape
[
2
][
2
]
)
return
(
input_shape
[
0
][
0
],
input_shape
[
0
][
1
],
sum
([
i
[
2
]
for
i
in
input_shape
])
)
def
get_config
(
self
):
config
=
super
(
NonMaximumSuppression
,
self
)
.
get_config
()
config
.
update
({
'nms_threshold'
:
self
.
nms_threshold
,
'
top_k'
:
self
.
top_k
,
'max_boxes'
:
self
.
max_boxes
,
'nms_threshold'
:
self
.
nms_threshold
,
'
score_threshold'
:
self
.
score_threshold
,
'max_boxes'
:
self
.
max_boxes
,
})
return
config
...
...
keras_retinanet/models/retinanet.py
Dosyayı görüntüle @
989b6999
...
...
@@ -208,12 +208,13 @@ def retinanet_bbox(inputs, num_classes, nms=True, name='retinanet-bbox', *args,
classification
=
model
.
outputs
[
2
]
# apply predicted regression to anchors
boxes
=
layers
.
RegressBoxes
(
name
=
'boxes'
)([
anchors
,
regression
])
detections
=
keras
.
layers
.
Concatenate
(
axis
=
2
)([
boxes
,
classification
]
+
model
.
outputs
[
3
:])
boxes
=
layers
.
RegressBoxes
(
name
=
'boxes'
)([
anchors
,
regression
])
# additionally apply non maximum suppression
if
nms
:
detections
=
layers
.
NonMaximumSuppression
(
name
=
'nms'
)([
boxes
,
classification
,
detections
])
detections
=
layers
.
NonMaximumSuppression
(
name
=
'nms'
)([
boxes
,
classification
]
+
model
.
outputs
[
3
:])
else
:
detections
=
keras
.
layers
.
Concatenate
(
axis
=
2
)([
boxes
,
classification
]
+
model
.
outputs
[
3
:])
# construct the model
return
keras
.
models
.
Model
(
inputs
=
inputs
,
outputs
=
model
.
outputs
[
1
:]
+
[
detections
],
name
=
name
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment