Kaydet (Commit) 5ee45381 authored tarafından Todor Balabanov's avatar Todor Balabanov Kaydeden (comit) Samuel Mehrbrodt

Some additional manual formatting.

Change-Id: Ie5590535d013aa2f747dd034fa2fcd2ae5c3956b
Reviewed-on: https://gerrit.libreoffice.org/72226
Tested-by: Jenkins
Reviewed-by: 's avatarSamuel Mehrbrodt <Samuel.Mehrbrodt@cib.de>
üst acd4625f
......@@ -46,6 +46,7 @@ public class DEPSAgent implements ILibEngine {
// Describes the problem to be solved
private ProblemEncoder problemEncoder;
// Forms the goodness landscape
private IGoodnessCompareEngine qualityComparator;
......@@ -57,8 +58,10 @@ public class DEPSAgent implements ILibEngine {
// the own memory: store the point that generated in old learning cycle
private BasicPoint pold_t;
// the own memory: store the point that generated in last learning cycle
private BasicPoint pcurrent_t;
// the own memory: store the personal best point
private SearchPoint pbest_t;
......@@ -109,11 +112,12 @@ public class DEPSAgent implements ILibEngine {
}
public void generatePoint() {
// generates a new point in the search space (S) based on
// its memory and the library
// generates a new point in the search space (S) based on
// its memory and the library
selectGTBehavior = this.getGTBehavior();
selectGTBehavior.generateBehavior(trailPoint, problemEncoder);
// evaluate into goodness information
// evaluate into goodness information
problemEncoder.evaluate(trailPoint);
}
......
......@@ -37,9 +37,14 @@ import net.adaptivebox.problem.ProblemEncoder;
import net.adaptivebox.space.BasicPoint;
public class DEGTBehavior extends AbsGTBehavior implements ILibEngine {
private static final int DVNum = 2; // Number of differential vectors, normally be 1 or 2
public double FACTOR = 0.5; // scale constant: (0, 1.2], normally be 0.5
public double CR = 0.9; // crossover constant: [0, 1], normally be 0.1 or 0.9
//Number of differential vectors, normally be 1 or 2
private static final int DVNum = 2;
//scale constant: (0, 1.2], normally be 0.5
public double FACTOR = 0.5;
//crossover constant: [0, 1], normally be 0.1 or 0.9
public double CR = 0.9;
// the own memory: store the point that generated in last learning cycle
private SearchPoint pbest_t;
......
......@@ -64,20 +64,23 @@ import net.adaptivebox.space.DesignSpace;
public class PSGTBehavior extends AbsGTBehavior {
// Two normally choices for (c1, c2, weight), i.e., (2, 2, 0.4), or (1.494,
// 1.494, 0.729)
// The first is used in dissipative PSO (cf. [4]) as CL>0, and the second is
// achieved by using
// constriction factors (cf. [3])
// 1.494, 0.729) The first is used in dissipative PSO (cf. [4]) as CL>0, and
// the second is achieved by using constriction factors (cf. [3])
public double c1 = 2;
public double c2 = 2;
public double weight = 0.4; // inertia weight
public double CL = 0; // See ref[4], normally be 0.001~0.005
//inertia weight
public double weight = 0.4;
//See ref[4], normally be 0.001~0.005
public double CL = 0;
// the own memory: store the point that generated in old learning cycle
private BasicPoint pold_t;
// the own memory: store the point that generated in last learning cycle
private BasicPoint pcurrent_t;
// the own memory: store the personal best point
private SearchPoint pbest_t;
......@@ -100,7 +103,8 @@ public class PSGTBehavior extends AbsGTBehavior {
deltaxb = weight * (pcurrent_t.getLocation()[b] - pold_t.getLocation()[b])
+ c1 * Math.random() * (pbest_t.getLocation()[b] - pcurrent_t.getLocation()[b])
+ c2 * Math.random() * (gbest_t.getLocation()[b] - pcurrent_t.getLocation()[b]);
// limitation for delta_x
// limitation for delta_x
deltaxbm = 0.5 * designSpace.getMagnitudeIn(b);
if (deltaxb < -deltaxbm) {
deltaxb = -deltaxbm;
......@@ -118,5 +122,4 @@ public class PSGTBehavior extends AbsGTBehavior {
pold_t.importLocation(pcurrent_t);
pcurrent_t.importLocation(trailPoint);
}
}
......@@ -42,13 +42,13 @@ public class EvalStruct {
evalRes[0] = evalRes[1] = 0;
for (int i = 0; i < evalElems.length; i++) {
if (evalElems[i].isOptType()) {
// The objectives (OPTIM type)
// The multi-objective will be translated into single-objective
// The objectives (OPTIM type)
// The multi-objective will be translated into single-objective
evalRes[1] += evalElems[i].evaluateOPTIM(targetValues[i]);
} else {
// The constraints (CONS type)
// If evalRes[0] equals to 0, then be a feasible point, i.e. satisfies
// all the constraints
// The constraints (CONS type)
// If evalRes[0] equals to 0, then be a feasible point, i.e. satisfies
// all the constraints
evalRes[0] += evalElems[i].evaluateCONS(targetValues[i]);
}
}
......
......@@ -51,8 +51,8 @@ public class ACRComparator implements IGoodnessCompareEngine, IUpdateCycleEngine
public ACRComparator(Library lib, int T) {
socialPool = lib;
this.T = T;
// set the (epsilon_t|t=0) as the maximum CONS value among the SearchPoints in
// the library
// set the (epsilon_t|t=0) as the maximum CONS value among the SearchPoints in the library
epsilon_t = lib.getExtremalVcon(true);
}
......@@ -74,8 +74,9 @@ public class ACRComparator implements IGoodnessCompareEngine, IUpdateCycleEngine
}
public void updateCycle(int t) {
// calculates the ratio
// calculates the ratio
double rn = (double) socialPool.getVconThanNum(epsilon_t) / (double) socialPool.getPopSize();
if (t > TthR * T && T != -1) { // Forcing sub-rule
epsilon_t *= BETAF;
} else { // Ratio-keeping sub-rules
......
......@@ -28,9 +28,7 @@ package net.adaptivebox.goodness;
public class BCHComparator implements IGoodnessCompareEngine {
/*
* check the magnitude of two array, the frontal is more important
**/
/* check the magnitude of two array, the frontal is more important */
private static int compareArray(double[] fit1, double[] fit2) {
for (int i = 0; i < fit1.length; i++) {
if (fit1[i] > fit2[i]) {
......
......@@ -29,9 +29,13 @@ public abstract interface IGoodnessCompareEngine {
int LESS_THAN = 0;
/**
* check the magnitude of two IEncodeEngine LARGER_THAN: goodness1 is worse than
* goodness2 LESS_THAN: goodness1 is better than goodness2 EQUAL_TO : goodness1
* is equal to goodness2
**/
* check the magnitude of two IEncodeEngine
*
* LARGER_THAN: goodness1 is worse than goodness2
*
* LESS_THAN: goodness1 is better than goodness2
*
* EQUAL_TO : goodness1 is equal to goodness2
*/
int compare(double[] goodness1, double[] goodness2);
}
......@@ -25,8 +25,7 @@ import net.adaptivebox.space.BasicPoint;
public class SearchPoint extends BasicPoint implements IEncodeEngine {
// store the encode information for goodness evaluation
// encodeInfo[0]: the sum of constraints (if it equals to 0, then be a feasible
// point)
// encodeInfo[0]: the sum of constraints (if it equals to 0, then be a feasible point)
// encodeInfo[1]: the value of objective function
private final double[] encodeInfo = new double[2];
private double objectiveValue;
......@@ -68,5 +67,4 @@ public class SearchPoint extends BasicPoint implements IEncodeEngine {
public boolean isFeasible() {
return encodeInfo[0] == 0; // no constraint violations
}
}
\ No newline at end of file
}
......@@ -85,11 +85,13 @@ public abstract class ProblemEncoder {
// evaluate the point into encoded information
public void evaluate(SearchPoint point) {
// copy to temp point
// copy to temp point
System.arraycopy(point.getLocation(), 0, this.tempLocation, 0, tempLocation.length);
// mapping the temp point to original search space S
// mapping the temp point to original search space S
designSpace.getMappingPoint(tempLocation);
// calculate based on the temp point
// calculate based on the temp point
calcTargets(tempResponseSet, tempLocation);
evalStruct.evaluate(point.getEncodeInfo(), tempResponseSet);
point.setObjectiveValue(tempResponseSet[0]);
......
......@@ -43,22 +43,24 @@ import net.adaptivebox.knowledge.SearchPoint;
public class SCAgent {
// Describes the problem to be solved (encode the point into intermediate
// information)
// Describes the problem to be solved (encode the point into intermediate information)
private ProblemEncoder problemEncoder;
// Forms the goodness landscape
private IGoodnessCompareEngine specComparator;
// the coefficients of SCAgent
private static final int TaoB = 2;
// The early version set TaoW as the size of external library (NL), but 4 is
// often enough
// The early version set TaoW as the size of external library (NL), but 4 is often enough
private static final int TaoW = 4;
// The referred external library
private Library externalLib;
// store the point that generated in current learning cycle
private SearchPoint trailPoint;
// the own memory: store the point that generated in last learning cycle
private SearchPoint pcurrent_t;
......@@ -77,9 +79,10 @@ public class SCAgent {
}
public SearchPoint generatePoint() {
// generate a new point
// generate a new point
generatePoint(trailPoint);
// evaluate the generated point
// evaluate the generated point
problemEncoder.evaluate(trailPoint);
return trailPoint;
}
......@@ -87,13 +90,14 @@ public class SCAgent {
private void generatePoint(ILocationEngine tempPoint) {
SearchPoint Xmodel, Xrefer, libBPoint;
// choose Selects a better point (libBPoint) from externalLib (L) based
// on tournament selection
// choose Selects a better point (libBPoint) from externalLib (L) based
// on tournament selection
int xb = externalLib.tournamentSelection(specComparator, TaoB, true);
libBPoint = externalLib.getSelectedPoint(xb);
// Compares pcurrent_t with libBPoint
// The better one becomes model point (Xmodel)
// The worse one becomes refer point (Xrefer)
// Compares pcurrent_t with libBPoint
// The better one becomes model point (Xmodel)
// The worse one becomes refer point (Xrefer)
if (specComparator.compare(pcurrent_t.getEncodeInfo(),
libBPoint.getEncodeInfo()) == IGoodnessCompareEngine.LARGER_THAN) {
Xmodel = libBPoint;
......@@ -102,19 +106,22 @@ public class SCAgent {
Xmodel = pcurrent_t;
Xrefer = libBPoint;
}
// observational learning: generates a new point near the model point, which
// the variation range is decided by the difference of Xmodel and Xrefer
// observational learning: generates a new point near the model point, which
// the variation range is decided by the difference of Xmodel and Xrefer
inferPoint(tempPoint, Xmodel, Xrefer, problemEncoder.getDesignSpace());
}
// 1. Update the current point into the external library
// 2. Replace the current point by the generated point
public void updateInfo() {
// Selects a bad point kw from TaoW points in Library
// Selects a bad point kw from TaoW points in Library
int xw = externalLib.tournamentSelection(specComparator, TaoW, false);
// Replaces kw with pcurrent_t
// Replaces kw with pcurrent_t
externalLib.getSelectedPoint(xw).importPoint(pcurrent_t);
// Replaces pcurrent_t (x(t)) with trailPoint (x(t+1))
// Replaces pcurrent_t (x(t)) with trailPoint (x(t+1))
pcurrent_t.importPoint(trailPoint);
}
......
......@@ -42,5 +42,4 @@ public class DesignDim {
return paramBound.maxValue - Math.rint((paramBound.maxValue - value) / grain) * grain;
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment