
P_IS_I Packages: Version Policy v0.2

Eray �Ozkural and T. Bar��s Metin

November 18, 2005

Revision History

� v0.1: Bar��s Metin wrote the �rst version preparing the outline, detailed
Source Version Section, and started the Section on Release Number.

� v0.2: Eray �Ozkural wrote a detailed introduction, added explanations
of release and build numbers, reorganized a bit.

1 Introduction

This document explains the version policy that applies to P_IS_I packages.
Classically, the issue of distinguishing source and binary distributions un-
ambiguously has not received a rigorous treatment in the context of LINUX
distributions. We have identi�ed several shortcomings of the usual prac-
tices of extending the original version with su�xes and pre�xes, colorfully
illustrated in the following common problems.

The problem of future downgrades The distribution chooses to use a
previous version of the package in the next release. There is no way
to indicate this, so ad-hoc solutions such as version pre�xes are used.
It is impossible to denote a future dependency that requires at least
this distribution source release in this case, either.

The problem of redundant distributions A trivial patch has been ap-
plied to the source. While few binary packages have been a�ected by
this change, all binary packages built from the source are redistributed.

The problem of underdetermined rebuilds There have been rapid changes
in the system, and although no changes have been made to the package
source, a new binary distribution must be prepared.

We have devised a slightly new approach in order to alleviate these prob-
lems. Our solution consists of encoding the history of source and binary

1



package developments in separate version strings we call release and build
numbers.

Since the source version is usually used by the users and developers
to identify software, we retain the notion of a source version in P_IS_I as a
convenience.

In the following sections, we explain the components of our versioning
scheme.

1.1 Source Version

Source version is the version number provided by the upstream maintainer
of the source archive used in package. It must always be the same as the
upstream version used.

Example: If the upstream archive name is bash-3.0.tar.gz the version
number of the package is 3.0

1.1.1 Version Su�xes

There is a pre-de�ned list of su�xes a package version can take.

� alpha Source/Package is in alpha state

� beta Source/Package is in beta state

� pre Source/Pacgage passed the beta state but stable version is not
relased yet.

� rc Source/Package is a release-candidate.

� p Source/Package is released and some patches are applied after the
release. This is the patch level.

The su�x should be written after the special separator character . And
there must allways be a number after a su�x. Example: packagename-
1.0 beta1

The basic order of the priorities for su�xes is:
p > (no su�x) > rc > pre > beta > alpha.

The scope of a source version string is global in the literal sense. It shall
not vary from repository to repository.

The support for these special su�xes as well as usual alphanumeric ver-
sion string ordering has been implemented in P_IS_I.

2 Identifying Package Sources

A P_IS_I source has three identity elements written under SOURCE tag: name,
source version, and source release number. We usually say just version and

2



release number/release instead of source version and source release number,
respectively. Name is available in the <Name> tag. Version and release are
available in the last <Update> element of <History> tag of a PSPEC.

The name of a source package is constant throughout its revision history.
The version is the original version, given by its programmers. Release is
a positive integer. Name and release is su�cient to uniquely identify a
particular PISI source revision. That is, version and release are independent.

2.1 Release Number

Release number is the number of the changes that are made to the package
source since the initial version in the distribution source. A change can be a
patch applied to the source archive, modi�cation in the actions.py, pspec.xml
or any �le in the source package directory. This change is indicated in
<Update> tags manually by the package maintainer.

The initial release of a package is by default 1. The release number
always increments by 1 in each revision in the History, even the slightest
ones, but it never decrements.

The scope of the release number is a given distribution, regardless of its
version, e.g. Pardus.

In the future, PISI will have strict checks for release numbers.

2.2 Dependency Speci�cations

We allow a package to use both source version and release to identify a
particular version or a range of package versions.

3 Identifying Binary packages

A PISI binary package is produced from a PISI source package. It has a name
that is constant throughout the history of the source package, and it inherits
the source version and release number from the source package. However,
a binary package has in addition a binary build number. Shortly, build
number or just build. For each of the architecture targets, e.g. particular
binaries, it also has an architecture tag.

A binary package is uniquely identi�ed by its name, build number, and
architecture regardless of the source version.

4 Build Number

Similarly to source release number, binary build number is the number of
changes that are made to a binary package. By change, we mean any bit
change. The existence of a change is tested by comparing the cryptographic
checksums in �les.xml with those of the previous build, and the build number

3



is automatically determined by the P_IS_I build system. The build number
starts from 1 as in release number, and increments by one with each binary
change.

The user never interferes with the build number himself. However, if
the user fails to provide the previous build, then a package without a build
number is built. A package without a build number is evaluated on the basis
of release number, which is guaranteed to exist.

The scope of a build number is a given distribution build environment
for a particular architecture, which may vary from repository to repository.
Therefore, it is not used in dependency speci�cations. However, the system
does assume that a build of a given package and architecture is unique in a
given repository.

5 Package File Names

A P_IS_I binary package �le name contains all the components relevant to its
identi�cation, separated by dashes:

<binary name>-<source version>-<source release>-<binary build>.pisi

6 Future Work

In the future, it may be necessary to extend the notion of release number and
build number to support branches and forks of a distribution. A proposal
was to have CVS-like branching, but it was dismissed as unnecessary.

4


