
Dependency Resolution in PISI

Eray Özkural

July 22, 2005

1 Introduction

Dependency resolution in package management systems have a significance
in that they are the key to providing system stability and internet upgrades.
The scale of package databases requires the dependency resolution mecha-
nism to be efficient and correct, motivating a closer look at the theory.

2 Review

Dependency resolution has been taken in the most general setting as the
famous SAT problem of propositional logic. If we consider a system D of
dependency statements Di, each statement can be taken as a proposition in
propositional logic which states, for instance:

Di: if package a is installed or package b is installed, then package i is
installable.
...

The system is thus understood as the conjunction of such facts, giving
us a logical programming formulation to determine installation conditions.
Note that for simplicity we do not consider the nuances in upgrade and
remove operations at the moment.

However, using a SAT solver for this operation may be shooting a fly
with a bazooka. We observe that only certain forms of propositions will be
necessary for a dependency system. Furthermore, as we shall see further
constraints and optimizations may be required of the system that are not
modelled well with the SAT problem.

We use a graph theoretic approach instead. A directed graph (digraph)
G = (V,E) is formally a set of vertices V and a set of edges E where each
edge (u, v) represents an edge from a vertex to another. Accessor functions
V (G) and E(G) yield the vertex and edge set of the graph G. Topological
sort of a graph gives a total ordering of the vertices in which there are only
forward edges. A vertex induced subgraph of G by vertex set A contains
only the vertex set A and edges incident to members of A.

1



3 Package operation planning

The dependency resolution problem may be viewed as a simple forward
chaining problem, where we would like to begin from an initial state S0 and
by following allowable system transitions ti : S → S, arrive at a desired
system state Sf (where S is the set of all states).

A system state Si is defined as the set of installed packages on the
system together with their versions, i.e. Si = {(x, v) : x is installed, v =
version(x)}. An atomic system transition ti chains one system state into
another, making one ACID change on the system. The usual atomic transi-
tions are the single package install, remove and reinstall (upgrade or down-
grade) operations found in low-level package management code of PISI. Note
that in PISI, an upgrade operation is identical to a remove operation fol-
lowed by an install operation (which sets it apart from some other packaging
systems).

A package operation plan is thus naturally conceived of as a sequence of
atomic system transitions. Given an initial state and a final state, the job
of the package operation planner is to determine whether there is a plan,
and if so find the ”best” one.

Where there are no versions involved (e.g. upgrade/downgrade), we will
replace the pair (x, v) with x in the definitions for simplicity.

3.1 System consistency

It is worth mentioning here the concept of system consistency. As in a
database transaction, it is not acceptable that the system violates an invari-
ant afterwards. In the context of PISI, system consistency is composed of
two conditions for the current set of installed packages.

1. All package dependencies are satisfied (we may call this a closed sys-
tem)

2. No package conflicts are present.

Therefore, by atomic transition we also mean one that does not corrupt
system consistency. The system is thus never in an inconsistent state. We
will explain the conflicts later, for the present let us look at the dependency
condition.

3.2 Solving the simplest case with topological sorting

We will now concentrate on a simple form of the problem which can be
solved with topological sorting. This form is not concerned with versions.
Neither do we consider remote repositories. From an initial set of packages
S0, we would like to install in addition a new set A of packages obtaining
Sf = S0 ∪A, for a static set of package relations.

2



The only relations considered are of the form: a Depends on b, or more
briefly aDb. The graph of all such simple dependency relations is a digraph
G. For each dependency relation aDb, there is an edge a→ b in G. Accessing
graph G usually requires a database operation and is therefore expensive.

We now consider the digraph GA of the minimal set of simple depen-
dency relations which contains all information required to construct a plan
to install packages A. GA is a vertex induced graph such that the fringe of
A, e.g. vertices with out-degree 0 depend only on packages that are already
installed (or none). Vertices of GA are taken from Sf . First, let us explain
the labelling scheme. Already installed vertices are labelled with ’i’. Pack-
ages to be added are labelled with ’a’, and packages to be installed due to
dependencies are labelled with ’d’. We construct the graph as follows

Algorithm 1 Make-GA(G, A)
1: GA ← vertex induced subgraph of G by A labelled with ’a’
2: repeat
3: done ← true
4: for each u ∈ V (GA) with out-degree 0 do
5: for v ∈ adj(u) of G do
6: if v /∈ V (GA) then
7: done ← false
8: if v is installed then
9: label v with ’i’

10: else
11: label v with ’d’
12: end if
13: add (u, v) to GA

14: end if
15: end for
16: end for
17: until done

By this iterative expansion, we do a minimum number of database ac-
cesses to G and construct a dependency graph in memory. If the GA’s fringe
has vertices with non ’i’-labels, then A cannot be installed. Otherwise, we
find a topological sort L of GA, and in the reverse order, install packages for
vertices labelled with ’a’ or ’d’. Observe that, by definition of a topological
sort, installing packages in the reverse order of a topological sort guarantees
that no package is installed before all of its dependencies are installed. Thus,
this yields a consistency-preserving plan.

3



3.3 Dependency conditions

In the PISI specification, we allow a dependency to specify a local condition,
for instance a program may require a dependency on libx with pardus
source release 3 or greater. Another program may require a dependency on
a particular source release. These conditions are local because they can be
computed over the elements of system state Si, e.g. package (name, version)
pairs. Let us denote this condition by a predicate P (b) such that aDb iff
P (b). The predicate P for the dependency aDb can be stored as edge data
for (u, v) on the graph.

In this case, the vertices of the package dependency graph G and the
planning graph GA retain the version information along with the package
name. The dependency relation thus holds between two pairs (p1, v1) and
(p2, v2), satisfying a given predicate P (p2, v2). When constructing the graph,
we therefore take this predicate into account and admit a new edge (u, v),
and thus a new vertex v into GA if and only if the target vertex satisfies
P (v).

3.4 Conflicts and COMAR dependencies

The tags Conflicts and Provides in PISI are inherited from Debian distri-
bution. A conflict between two packages (a conflicts with b) is a symmetric
relation that prevents the packages a, b from being installed simultaneously
(It is sufficient that only one direction of the relation is declared, the other
direction is inferred). Provision in the form of a provides A denotes that a
implements a virtual package abstraction A.

In PISI, a package can provide an object of a COMAR Object Model
(OM), and is currently the only model of a “virtual package”. In the follow-
ing example, let a1, a2, . . . , an provide the OM A. A package can depend on
another package’s OM, for instance b comar-depends on A (or in short form
bDA) (Currently, conditions on virtual dependencies are not supported). In
this case, it is sufficient that only one of the ai are installed. To resolve this,
the user is asked to choose from a list of alternatives immediately, since
otherwise there is unavoidable combinatorial explosion (in the form of hav-
ing to consider ΠbDAnum(A) graphs in the worst case where num(A) is the
number of alternatives for comar OM A; the problem is that there seems
to be no simple solution to solve satisfiability with arbitrary disjunctions in
package dependency, short of a SAT solver).

The resolution of conflicts to maintain system consistency condition 2
is easier to achieve. This can be satisfied by disallowing installation of a
package that would violate the condition, or removing currently installed
packages which conflict with the newly installed package and its dependen-
cies. In most package managers, the second option is confirmed by the user
for making it easier. In the install operation, after constructing the par-

4



tial dependency graph GA, we merely have to check whether any conflict
appears among the vertices of GA. If so, then the operation is untenable,
since GA shows the future state of the installed system. Since a conflict is
symmetric, it is represented as a bidirectional edge a ↔ b. To distinguish
dependencies from conflicts, the edges would have to be labelled in this case,
for instance with ’d’ and ’c’. The removal option can be implemented by
invoking a multi-package remove operation on the packages in conflict.

3.5 Remove operation

Dependency resolution for remove operation is similar to install. The only
significant difference is that we remove the packages in the topological order
rather than installing packages in the reverse topological order.

4 Remote repositories and upgrade operation

The upgrade operation is more complicated. First of all, the system has
to distinguish between the current relation graph (e.g. dependencies and
conflicts), and the future relation graph which may be different in rather
important aspects. In theory, we allow any dependency and conflict to
change. Therefore, we have a G0 which represents the current relations
(among installed packages) in the system, and a Gf which is probably taken
from a remote package repository. We begin by noting that G0 and Gf have
to be compatible. That is, to say, if a package (p1, v1) is shared across two
graphs, then the declarations made by the package are one and the same.

G0 can be calculated from the package information (e.g. metadata) of
the installed packages and is stored by PISI in a dedicated database. Gf is
most likely constructed from a PISI Index file corresponding to a particular
package repository. Accessing both of these entities is expensive and we
should take care to minimize access as in the previous section.

To preserve consistency during individual transitions, the planner can
choose to remove a minimum number of packages from the system to bring
it to a clean state, and then install the new versions of these packages in the
correct order. Let us assume that it is indeed possible to achieve this “clean
state”. Apparently, this is not always possible because other packages may
depend on the package(s) to upgrade. At any rate, to achieve this, first we
need to calculate subgraphs of G0 and Gf . We can calculate alternative
plans from these subgraphs if need be.

Let A be the set of packages to be upgraded from a given repository.
GA,0 is the subgraph of G0 induced by the “upgrade closure” of A. The
“upgrade closure” of a set A of packages is defined as a minimal set of
packages B ⊇ A such that there is no package in B that requires an upgrade
for A to be upgraded. This is found by assuming that the current system

5



state S0 is consistent, and by constructing a relation graph of the future
state of the system to detect the dependencies that have changed.

Obviously, to make a plan, we must first know the goal state. In a multi-
package upgrade, the exact details of the goal state depend on the graph Gf

of the repository. Thus, we construct a graph GA,f that is a vertex-induced
subgraph of Gf such that it contains all information relevant to upgrading
packages A. We begin by a vertex induced subgraph of Gf by A. These
are the packages that will be upgraded in any case. Then, we make a pass
on the vertices, and look at all the outgoing edges, we compare whether
this edge has changed in any substantial way from the previous version. In
particular, we are interested in whether the predicate of the edge is valid
for the version of the same package in our current system. Every compared
vertex in this manner is marked done, and the edges not valid for the current
system pull new unmarked vertices into Gf , this continues until there are
no unmarked vertices left. Hence, the vertices of Gf are the packages that
must be upgraded.

To actually carry out the upgrade a strategy is to upgrade all the pack-
ages in GA,f in some order. A good order is again the reverse topological
order order, in fact, the upgrade operation is merely a special case of a
multi-package installation code that can install from a remote repository,
since a multi-package installation can contain upgrades in addition to new
packages. However, in case no package depends on the packages to be up-
graded, then we can carry out a completely consistency-preserving plan as
discussed above. The conflicts are resolved in the usual fashion, by remov-
ing those packages in conflict with new packages that are installed. This
can be accomplished by invoking a remove operation prior to the upgrade
operation.

5 Examples

5.1 A single package upgrade

goal: upgrade (a, 1) to (a, 2)

rules:
(a, 1) depends on (b, 1), (c, 1)
(a, 1) conflicts with (d, 1)
(a, 2) depends on (c, 3), (d, 2)
(a, 2) conflicts with (b, 1)

initial state:
(a, 1), (b, 1), (c, 1) installed

In this case, we can find a consistency-preserving plan in terms of install

6



and remove operations.
plan:
remove (a, 1)
remove (b, 1)
remove (c, 1)
install (c, 3)
install (d, 2)
install (a, 2)

5.2 Another upgrade

goal: upgrade (b, 1)→ (b, 2)

current dep: (a, 1)→ [= 1](b, 1)→ [= 1](c, 1)→ [= 1](d, 1)
repo dep: (a, 1)→ [= 2](b, 2)→ [= 2](c, 2)→ [= 1](d, 1)

In this case, we cannot remove (b, 1) because it’s locked in the chain. In
fact, here there is no consistency-preserving plan in terms of atomic single
package transitions: install, remove, upgrade. In these cases, it seems best
to resort to upgrade in place, and in the reverse topological order of depen-
dencies.
plan:
upgrade (c, 1)→ (c, 2)
upgrade (b, 1)→ (b, 2)

5.3 A multi package remove

goal: remove (a, 2), (b, 3), (c, 2)

rules:
(c, 2) depends (a, 2)
(d, 2) depends on (b, 3), (c, 2)
(e, 1) depends on (a, 2)
(f, 2) depends on (e, 1)
(g, 2) depends on (e, 1)

plan:
remove (f, 2)
remove (g, 2)
remove (e, 1)
remove (d, 2)
remove (b, 3)

7



remove (c, 2)
remove (a, 2)

8


