
Dependency Resolution in PISI

Eray Özkural

July 21, 2005

1 Introduction

Dependency resolution in package management systems have a significance
in that they are the key to providing system stability and internet upgrades.
The scale of package databases requires the dependency resolution mecha-
nism to be efficient and correct, motivating a closer look at the theory.

2 Review

Dependency resolution has been taken in the most general setting as the
famous SAT problem of propositional logic. If we consider a system D of
dependency statements Di, each statement can be taken as a proposition in
propositional logic which states, for instance:

Di: if package a is installed or package b is installed, then package i is
installable.
...

The system is thus understood as the conjunction of such facts, giving
us a logical programming formulation to determine installation conditions.

Note that for simplicity we do not consider the nuances in upgrade and
remove operations at the moment.

However, using a SAT solver for this operation may be shooting a fly
with a bazooka. We observe that only certain forms of propositions will be
necessary for a dependency system. Furthermore, as we shall see further
constraints and optimizations may be required of the system that are not
modelled well with the SAT problem.

We use a graph theoretic approach instead. A directed graph (digraph)
G = (V,E) is formally a set of vertices V and a set of edges E where each
edge (u, v) represents an edge from a vertex to another. Topological sort of
a graph gives a total ordering of the vertices in which there are only forward
edges.

1



3 Package operation planning

The dependency resolution problem may be viewed as a simple forward
chaining problem, where we would like to begin from an initial state S0 and
by following allowable system transitions ti : S− > S, arrive at a desired
system state Sf .

A system state Si is defined as the set of installed packages on the
system together with their versions, i.e. Si = {(x, v) : x is installed, v =
version(x)}. An atomic system transition ti chains one system state into
another, making one ACID change on the system. The usual atomic tran-
sitions are the single package install, remove and upgrade operations found
in low-level package management code.

A package operation plan is thus naturally conceived of as a sequence of
atomic system transitions. Given an initial state and a final state, the job
of the package operation planner is to determine whether there is a plan,
and if so find the ”best” one.

Where there are no versions involved (e.g. upgrade/downgrade), we will
replace the pair (x, v) with x.

3.1 System consistency

It is worth mentioning here the concept of system consistency. As in a
database transaction, it is not acceptable that the system violates an invari-
ant afterwards. In the context of PISI, system consistency is composed of
two conditions for the current set of installed packages.

1. All package dependencies are satisfied (we may call this a closed sys-
tem)

2. No package conflicts are present.

Therefore, by atomic transition we also mean one that does not corrupt
system consistency. The system is thus never in an inconsistent state.

3.2 Solving the simplest case with topological sorting

We will now concentrate on a simple form of the problem which can be
solved with topological sorting. This form is not concerned with versions.
From initial set of packages S0, we would like to install in addition a new
set A of packages obtaining Sf = S0 ∪A.

The only relations considered are of the form: a Depends on b, or more
briefly aDb.

The graph of all such simple dependency relations is a directed graph
(digraph) G. For each dependency relation aDB, there is an edge a→ b in
G. Accessing graph G usually requires a database operation and is therefore
expensive.

2



We now consider the digraph GA of the minimal set of simple depen-
dency relations which contains all information required to construct a plan
to install packages A. GA is a vertex induced graph such that the fringe of
A, e.g. vertices with out-degree 0 are already installed. Vertices of GA are
taken from Sf . First, let us explain the labelling scheme. Already installed
vertices are labelled with ’i’. Packages to be added are labelled with ’a’,
and packages to be installed due to dependencies are labelled with ’d’. We
construct the graph as follows

1: GA ← isolated vertex set A labelled with ’a’
2: repeat
3: done ← true
4: for each u ∈ VA with out-degree 0 do
5: for v ∈ adj(u) of G do
6: if vis /∈ VA then
7: done ← false
8: if v is installed then
9: label v with ’i’

10: else
11: label v with ’d’
12: end if
13: add (u, v) to GA

14: end if
15: end for
16: end for
17: until done

By this iterative expansion, we do a minimum number of database ac-
cesses to G and construct a dependency graph in memory. If the GA’s fringe
has vertices with non ’i’-labels, then A cannot be installed. Otherwise, we
find a topological sort L of GA, and in the reverse order, install packages for
vertices labelled with ’a’ or ’d’.

3.3 Conflicts and provisions

The tags conflict

4 Examples

4.1 A single package upgrade

plan: upgrade (a, 1) to (a, 2)

rules:

3



(a, 1) depends on (b, 1), (c, 1)
(a, 1) conflicts with (d, 1)
(a, 2) depends on (c, 3), (d, 2)
(a, 2) conflicts with (b, 1)

initial state:
(a, 1), (b, 1), (c, 1) installed

plan:
remove (b, 1)
remove (c, 1)
remove (a, 1)
install (c, 3)
install (d, 2)
install (a, 2)

4.2 A multi package remove

plan: remove (a, 2), (b, 3), (c, 2)

rules:
(c, 2) depends (a, 2)
(d, 2) depends on (b, 3), (c, 2)
(e, 1) depends on (a, 2)
(f, 2) depends on (e, 1)
(g, 2) depends on (e, 1)

plan:
remove (f, 2)
remove (g, 2)
remove (e, 1)
remove (d, 2)
remove (b, 3)
remove (c, 2)
remove (a, 2)

4


