
Dependency Resolution in PISI

Eray Özkural

July 21, 2005

1 Introduction

Dependency resolution in package management systems have a significance
in that they are the key to providing system stability and internet upgrades.
The scale of package databases requires the dependency resolution mecha-
nism to be efficient and correct, motivating a closer look at the theory.

2 Review

Dependency resolution has been taken in the most general setting as the
famous SAT problem of propositional logic. If we consider a system D of
dependency statements Di, each statement can be taken as a proposition in
propositional logic which states, for instance:

Di: if package a is installed or package b is installed, then package i is
installable.
...

The system is thus understood as the conjunction of such facts, giving
us a logical programming formulation to determine installation conditions.
Note that for simplicity we do not consider the nuances in upgrade and
remove operations at the moment.

However, using a SAT solver for this operation may be shooting a fly
with a bazooka. We observe that only certain forms of propositions will be
necessary for a dependency system. Furthermore, as we shall see further
constraints and optimizations may be required of the system that are not
modelled well with the SAT problem.

We use a graph theoretic approach instead. A directed graph (digraph)
G = (V,E) is formally a set of vertices V and a set of edges E where each
edge (u, v) represents an edge from a vertex to another. Topological sort of
a graph gives a total ordering of the vertices in which there are only forward
edges.

1



3 Package operation planning

The dependency resolution problem may be viewed as a simple forward
chaining problem, where we would like to begin from an initial state S0 and
by following allowable system transitions ti : S− > S, arrive at a desired
system state Sf .

A system state Si is defined as the set of installed packages on the
system together with their versions, i.e. Si = {(x, v) : x is installed, v =
version(x)}. An atomic system transition ti chains one system state into
another, making one ACID change on the system. The usual atomic transi-
tions are the single package install and remove operations found in low-level
package management code of PISI. Note that in PISI, an upgrade operation
is identical to a remove operation followed by an install operation (which
sets it apart from some other packaging systems).

A package operation plan is thus naturally conceived of as a sequence of
atomic system transitions. Given an initial state and a final state, the job
of the package operation planner is to determine whether there is a plan,
and if so find the ”best” one.

Where there are no versions involved (e.g. upgrade/downgrade), we will
replace the pair (x, v) with x in the definitions for simplicity.

3.1 System consistency

It is worth mentioning here the concept of system consistency. As in a
database transaction, it is not acceptable that the system violates an invari-
ant afterwards. In the context of PISI, system consistency is composed of
two conditions for the current set of installed packages.

1. All package dependencies are satisfied (we may call this a closed sys-
tem)

2. No packag conflicts are present.

Therefore, by atomic transition we also mean one that does not corrupt
system consistency. The system is thus never in an inconsistent state. We
will explain the conflicts later, for the present let us look at the dependency
condition.

3.2 Solving the simplest case with topological sorting

We will now concentrate on a simple form of the problem which can be
solved with topological sorting. This form is not concerned with versions.
From initial set of packages S0, we would like to install in addition a new
set A of packages obtaining Sf = S0 ∪A.

The only relations considered are of the form: a Depends on b, or more
briefly aDb.

2



The graph of all such simple dependency relations is a directed graph
(digraph) G. For each dependency relation aDB, there is an edge a→ b in
G. Accessing graph G usually requires a database operation and is therefore
expensive.

We now consider the digraph GA of the minimal set of simple depen-
dency relations which contains all information required to construct a plan
to install packages A. GA is a vertex induced graph such that the fringe of
A, e.g. vertices with out-degree 0 are already installed. Vertices of GA are
taken from Sf . First, let us explain the labelling scheme. Already installed
vertices are labelled with ’i’. Packages to be added are labelled with ’a’,
and packages to be installed due to dependencies are labelled with ’d’. We
construct the graph as follows

1: GA ← isolated vertex set A labelled with ’a’
2: repeat
3: done ← true
4: for each u ∈ VA with out-degree 0 do
5: for v ∈ adj(u) of G do
6: if vis /∈ VA then
7: done ← false
8: if v is installed then
9: label v with ’i’

10: else
11: label v with ’d’
12: end if
13: add (u, v) to GA

14: end if
15: end for
16: end for
17: until done

By this iterative expansion, we do a minimum number of database ac-
cesses to G and construct a dependency graph in memory. If the GA’s fringe
has vertices with non ’i’-labels, then A cannot be installed. Otherwise, we
find a topological sort L of GA, and in the reverse order, install packages for
vertices labelled with ’a’ or ’d’. Observe that, by definition of a topological
sort, installing packages in the reverse order of a topological sort guarantees
that no package is installed before all of its dependencies are installed. Thus,
this yields a consistency-preserving plan.

3.3 Conditional dependencies

In the PISI specification, we allow a dependency to specify a local condition,
for instance a program may require a dependency on libx with pardus

3



source release 3 or greater. Another program may require a dependency
on a particular source release. These conditions are local because they can
be computed over the elements of system state Si, e.g. package (name,
version) pairs. Let us denote this condition by a predicate P (b) such that
aDbiffP (b). The predicate P for the dependency aDb can be stored as
edge data for (u, v) on the graph.

In this case, the vertices of the package dependency graph G and the
planning graph GA retain the version information along with the package
name. The dependency relation thus holds between two pairs (p1, v1) and
(p2, v2), satisfying a given predicate P (p2, v2). When constructing the graph,
we therefore take this predicate into account and admit a new edge (u, v),
and thus a new vertex v into GA if and only if the target vertex satisfies
P (v).

3.4 Conflicts and COMAR dependencies

The tags Conflicts and Provides are inherited from Debian distribution.
A conflict between two packages (a conflicts with b) is a symmetric relation
that prevents the packages (a, b) from being installed simultaneously. (It
is sufficient that only one direction of the relation is declared, the other
direction is inferred) Provision in the form of a provides A denotes that a
implements a virtual package abstraction A.

In PISI, a package can provide an object of a COMAR Object Model
(OM), and is currently the only model of a “virtual package”. In the fol-
lowing example, let a1, a2, . . . , an provide the OM A. A package can depend
on another package’s OM, for instance b comar-depends on A (or in short
form bDA). In this case, it is sufficient that only one of the ai are installed.
To resolve this, the user is asked to choose from a list of alternatives im-
mediately, since otherwise there is unavoidable combinatorial explosion (in
the form of having to consider ΠbDAnum(A) graphs in the worst case where
num(A) is the number of alternatives for comar OM A; the problem is that
there seems to be no simple solution to solve satisfiability with arbitrary
disjunctions in package dependency, short of a SAT solver).

The resolution of conflicts to maintain system consistency condition 2
is easier to achieve. This can be always satisfied by disallowing installation
of a package that would violate the condition. In the install operation,
after constructing the partial dependency graph GA, we merely have to
check whether any conflict appears within the vertices of GA. If so, then
the operation is untenable, since GA shows the future state of the installed
system. Since a conflict is symmetric, it is represented as a bidirectional
edge a ↔ b. To distinguish dependencies from conflicts, the edges would
have to be labelled in this case, for instance with ’d’ and ’c’.

4



4 Remove and upgrade operations

Dependency resolution for remove operation is similar to install. The only
difference is that we follow the topological sort order, instead of its reverse
when processing packages.

The upgrade operation is more complicated. First of all, the system has
to distinguish between the current relation graph (e.g. dependencies and
conflicts), and the future relation graph which may be different in rather
important aspects. In theory, we allow any dependency and conflict to
change.

Therefore, we have a G0 which represents the current relations (among
installed packages) in the system, and a Gf which is probably taken from a
remote package repository.

5 Examples

5.1 A single package upgrade

plan: upgrade (a, 1) to (a, 2)

rules:
(a, 1) depends on (b, 1), (c, 1)
(a, 1) conflicts with (d, 1)
(a, 2) depends on (c, 3), (d, 2)
(a, 2) conflicts with (b, 1)

initial state:
(a, 1), (b, 1), (c, 1) installed

plan:
remove (b, 1)
remove (c, 1)
remove (a, 1)
install (c, 3)
install (d, 2)
install (a, 2)

5.2 A multi package remove

plan: remove (a, 2), (b, 3), (c, 2)

rules:
(c, 2) depends (a, 2)

5



(d, 2) depends on (b, 3), (c, 2)
(e, 1) depends on (a, 2)
(f, 2) depends on (e, 1)
(g, 2) depends on (e, 1)

plan:
remove (f, 2)
remove (g, 2)
remove (e, 1)
remove (d, 2)
remove (b, 3)
remove (c, 2)
remove (a, 2)

6


